

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2006 YEAR 11 MATHEMATICS EXTENSION HSC Task #1

Mathematics Extension

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Start each new question in a separate answer booklet.
- Marks may **NOT** be awarded for untidy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 76

Examiner: D.McQuillan

Total marks – 76 All question are NOT of equal value

	Question One	Marks
(a)	Which of the following are NOT polynomials.	3
	(A) $x\sqrt{x} + 2x$ (B) $\sqrt{2}x^3 + 5x - 2$ (C) $2x^3 + 5x^{-2}$	
	(D) -5 (E) $3+7x^3-2x^5$ (F) $\frac{x^2-4}{x^2-x-2}$.	
(b)	For the parabola with focus (-1, 4) and vertex (-1, 0) find: (i) the focal length	3
	(i) equation of the directrix	
	(iii) equation of the parabola	
(c)	Show that $x+1$ is a factor of $x^3 - 5x^2 + 3x + 9$.	2
(d)	(i) Write down the expansion of $sin(A+B)$.	3
	(ii) Hence find the exact value of $sin(105^\circ)$.	
(e)	If $\tan \alpha = \frac{2}{3}$ and $\tan \beta = \frac{1}{5}$ find the value of $\tan(\alpha - \beta)$.	2

Answer each QUESTION in a SEPARATE writing booklet

(f)	Given two polynomials, $P(x)$ of degree m, $Q(x)$ of degree n	
	and $\frac{m}{n} > 1$. Find the degree of:	2
	(i) $P(x) \times Q(x)$	
	(ii) $Q(x) - P(x)$	
(g)	Simplify $\sin A \sin 2A + \cos A \cos 2A$.	2
(h)	By expressing $6x^3 + 25x^2 + 5x - 1$ in the form	

(3x+2)Q(x) + R(x) find the polynomials Q(x) and R(x). Given that R(x) is a constant.

End of Question One

	Question Two	Marks
(a)	Sketch the graphs of the following equations showing all x and y-intercepts.	4
	(i) $y = (x-1)^{2}$ (ii) $y = (x+4)^{2}(x-1)(5-x)$	
(b)	The circles with centres (-3, -2) and (5, 4) and radii 7 and 3 respectively, intersect at only one point. By considering the division of an interval into a ratio find the point of intersection.	2
(c)	When $x^4 - 8x^3 - mx^2 - (m-4)x - 27$ is divided by $x - 2$ the remainder is -7. Find the value of <i>m</i> .	2
(d)	Find an equation of a line with an <i>x</i> -intercept of 3 and makes an angle of 45° with the line $y = 2x + 5$.	2
(e)	Find the Cartesian equation of the parabola with parametric equations $x = \frac{t}{2} + 5$, $y = t^2 - 1$.	2

(f) The roots of
$$2x^3 + 6x + 3 = 0$$
 are α, β, γ .
Find the value of:
(i) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$
(ii) $\alpha^2 + \beta^2 + \gamma^2$

(g) Express
$$5x^3 - 15x^2 + 13x - 1$$
 in the form $A(x-1)^3 + B(x-1) + C$ 3

End of Question Two

	Question Three	Marks
(a)	Jamie and Adam want to secure a vertical pole by attaching guy wires to the top. The pole is due north of Adam and the angle of elevation to the top is $15^{\circ}18'$, this point is where the first wire will be grounded. Adam now walks 68m due west and finds the pole has a bearing 067° , this point is where a second wire is to grounded. Find the length of wire they will need for these two wires, rounded up to the nearest metre.	3
(b)	The points $P(6p, 3p^2)$ and $Q(6q, 3q^2)$ lie on the parabola $x^2 = 12y$.	6
	(i) Show that the equation of the tangent at <i>P</i> is $y = px - 3p^2$.	
	(ii) Hence write down the equation of the tangent at Q.	
	(iii) Find the point of intersection of the two tangents.	
(c)	Prove the identity $\frac{\sin\phi}{1-\cos\phi} = \csc\phi + \cot\phi$.	3

(d) In a trapezium *ABCD*, *AB* is parallel to *DC*, *AB* = *BC* = 10cm, CD = 7cm and DA = 8cm. Find the size of $\angle BCD$ to the nearest minute.

Year 11 Mathematics Extension HSC Task #1

- (e) Given the expression $6\sin x + 2\sqrt{3}\cos x$.
 - (i) Write the expression in the form $R\sin(x+\alpha)$ where R > 0and α is acute.
 - (ii) Hence solve $6\sin x + 2\sqrt{3}\cos x = 2\sqrt{6}$, for $0 \le x \le 2\pi$.
 - (iii) Write down the general solution for the equation in part (ii).
 - (iv) Find the greatest value of $6\sin x + 2\sqrt{3}\cos x$.

End of Question Three

(b) Given the figure,

- (i) Prove the subtraction formula cos(α - β) = cos α cos β + sin α sin β
 by comparing two expressions for c².
- (ii) Using part (i) and the fact that cos θ is an even function and sin θ is an odd function, deduce the addition formula for cosine.
- (iii) Use the addition formula for cosine and the identities $\cos(90^\circ - \theta) = \sin \theta$ $\sin(90^\circ - \theta) = \cos \theta$ to prove the subtraction formula for the sine function.

(c) Solve $\tan x \sin x = 3 \sin x - \sec x$, for $0^\circ \le x \le 180^\circ$. Round to the nearest minute.

(d) The points
$$P\left(p, \frac{p^2}{2}\right)$$
 and $Q\left(q, \frac{q^2}{2}\right)$ lie on the parabola $x^2 = 2y$.

(i) Show that the equation of the chord PQ is

$$y = \frac{(p+q)x - pq}{2}$$

- (ii) If PQ passes through (2, -1) show that pq = 2p + 2q + 2.
- (iii) Find the locus of M the mid-point of PQ.

End of Question Four

End of Paper

YRII extension maths HSC Task 1 Jern 4 2006 OI (a) not polynomials A, C, F. 3) $(b) \quad \stackrel{\circ}{\searrow} \quad \stackrel{\circ}{\longrightarrow} \quad \stackrel{\circ}{\longrightarrow}$ 19 (i) Jocal length 'a' = 4 (ii) eq " directrix y = -4 () (iii) eq parabola $(x-h)^2 = 4a(y-k)$. (h,k) = (-1,0) $(x+1)^2 = 4x4(y-0)$ $(x+1)^2 = 16y \cdot (1)$ (c) could use long division or let P(x) = x - 5x + 3x + 9let x + 1 = 0 = 7 x = -150 P(-1) = -1-5x-1+3x-1+9 =-1-5-3+9=0 Isa Jactor. 2 (d) (i) $\sin(A+B) = \sin A \cos B + \cos A \sin B$ (11) sin 105 = sin (60°+45°)= sin 60°0545°+00560 sin 45° $\frac{13 \times 1}{2} + \frac{1}{2} \times \frac{1}{52}$ $= (\underbrace{J\overline{3}+1}_{2,\overline{52}}) \times \underbrace{J\overline{2}}_{2,\overline{52}} = \underbrace{J\overline{6}+J\overline{2}}_{4,\overline{52}} + \underbrace{J\overline{6}+J\overline{6}+J\overline{2}}_{4,\overline{52}} + \underbrace{J\overline{6}+J\overline{6}+J\overline{6}}_{4,\overline{52}} + \underbrace{J\overline{6}+J\overline{6}+J\overline{6}$

(e) tan(d-B)= tand-tanB I + tand tanps $\frac{2}{3} - \frac{1}{5} = \frac{7}{15} = \frac{7}{17}$ $\frac{1}{1 + \frac{2}{3} \times \frac{1}{5}} = \frac{7}{15} = \frac{7}{17}$ $\frac{1}{2}$

(F) P(x) degree M Q(x) degree N $\frac{m}{n} > 1 \Rightarrow m > n$ (1) add indices m+n. (ii) bigger index stays m () (9) $\cos(x-y) = \cos x \cos y + \sin x \sin y$ So COSACOSZA + SINASINZA = cos (A-2A) $= \cos(-A)$ = CosA even In 2 $2x^2+7x-3$ (h) 3x+2) $6x^{3}+25x^{2}+5x-1$ $6\chi^3 + 4\chi^2$ $21x^{2} + 5x - 1$ $212c^{2} + 14x$ -9x -1 -9x-6

 $(31+2)(21^{2}+7)(3-3)+5$

$$\begin{array}{c} Solution \quad Question \quad [2] \\ (a) \quad (i) \quad y = (n-i)^{3} \\ (b) \quad (b) \quad (c) \quad (c)$$

• (e)
$$x = \frac{1}{2} + 5$$

 $\therefore f = 2(x-5) - 1$
 $y = \frac{1}{2} - 1$
 $y = 4(x-5)^{2} - 1$
 $y = 4(x^{2}-10x+25) - 1$
 $y = 4x^{2}-40x + 99$
• (f) $2x^{3}+6x+3 = 0$ [4]
(i) $\frac{1}{2} + \frac{1}{6} + \frac{1}{5}$
 $= \frac{85+\alpha 5+\alpha 6}{\alpha 85}$
 $= \frac{3}{-3/2}$
 $= -2$.

(iii)
$$(x^{2}+\beta^{2}+\beta^{2}) = (x+\beta+\beta)^{2}-2(x\beta+x\beta+\beta)^{2}$$

 $= 0 - 2(3)$
 $= -6.$
(g) $5x^{3}-15x^{2}+13x-1 = A(x-1)^{3}+B(x-1)+C.$
(i) Equate loggicient of x^{3}
 $\therefore [A=5]:$ 1
(ii) Put $x = 1,$
 $5-15+12 = C$ $\therefore [C=2]$
(iii) put $x = 0$
 $-A - B + C = -1$
 $-5 - B + 2 = -1$
 $B = -2$
 $\therefore 5x^{3}-15x^{2}+13x-1$
 $= 5(x-1)^{3}-2(x-1)+2.$

Buy trian 3
(a)
(b)
(c) RMS =
$$\frac{1}{14} + \frac{1}{14} + \frac{1}{14}$$

$$\frac{y}{n!} \mathbb{E} \text{still Task #11(06)} \\ (\underline{Q} \text{ Lits} = \frac{1}{200} \mathbb{E}_{1} + \frac{1}{1-1} + \frac{1}{1-1} + \frac{1}{1-1} = \frac{1+1}{1-1} + \frac{1}{1-1} + \frac{1}{1-1} + \frac{1}{1-1} + \frac{1}{1-1} = \frac{1+1}{1-1} + \frac{1}{1-1} + \frac{1}{1-1} + \frac{1}{1-1} = \frac{1}{1-1} + \frac{1}{1-1} + \frac{1}{1-1} + \frac{1}{1-1} = \frac{1}{1-1} + \frac{1}{1-1} + \frac{1}{1-1} = \frac{1}{1-1} + \frac{1}{1-1} + \frac{1}{1-1} = \frac{1}{1-1} = \frac{1}{1-1} + \frac{1}{1-1} = \frac{1}{$$

.

$$2 (y - \frac{p^{2}}{r}) = \frac{x - p}{q - p}$$

$$2 (y - \frac{p^{2}}{r}) = (x - p)(q + p)$$

$$= (p + q)x - p^{2} - pq$$

$$(x) = \frac{1}{2}((p + q)x - pq)$$

$$(y) = \frac{1}{2}((p + q)x - pq)$$

$$(y) = \frac{1}{2}(2p + 2q - pq)$$

$$-2 = 2p + 2q - pq$$

$$21 \quad pq = 2p + 2q + 2$$

$$(y) = \frac{p^{2} + q^{2}}{2}$$

$$(y) = \frac{p^{2} + q^{2}}{2}$$

$$(y) = \frac{p^{2} + q^{2}}{2}$$

$$= \frac{p^{2} + q^{2}}{q}$$

$$= \frac{p^{2} + q^{2}}{q}$$

$$\sum p + q = 2n \quad p^{3} + q^{3} = 2p + q^{3}$$

$$\sum p + q = (p + q)^{2} - 2pq$$

$$Ay = (2x)^{3} - 2(2p + 2q + 2)$$

$$= 4x^{3} - 2(2(2n) + 2)$$

$$= 4x^{2} - 8x - 4$$

$$\sum 1 - 2y = 2x^{2} - 2x - 1$$

$$= 2y^{2} - 2x - 1$$

.